Emergencia del pensamiento algebraico en preescolar: estrategias de alumnos en relación con el concepto de equivalencia matemática
Resumen
En este artículo presentaremos los resultados de un estudio de investigación colaborativa realizado en Ontario, Canadá. El objetivo era caracterizar las estrategias de los alumnos de preescolar asociadas a un pensamiento algebraico con respecto a la noción de equivalencia matemática. Para esto, propusimos dos tareas a 36 estudiantes de tres clases y analizamos sus estrategias. Nuestros resultados destacan 14 estrategias utilizadas por los estudiantes para trabajar con el concepto de equivalencia; entre estas, tres facilitarían el establecimiento de un razonamiento asociado con un pensamiento algebraico. Nuestra investigación muestra que los niños pueden razonar sobre la noción de equivalencia en un sentido relacional, y esto desde el preescolar, mucho antes de que se introduzca el álgebra formal.
Citas
Anwandter Cuellar, N. S., Boily, M., Lessard, G. y Mailhot, D. (2016). The relationship between equivalence and equality in a non-symbolic context with regard to algebraic thinking in young children. En T. Meaney, O. Helenius, M.L. Johansson, T. Lange et A. Wernberg (dir.) Mathematics education in the early years: Results from the POEM2 Conference 2014 (p. 309-324), Cham, Suisse: Springer International Publishing.
Beatty, R. (2010). Supporting algebraic thinking, Prioritizing visual representations. OAME Gazette, 49(2), 28-33.
Bednarz, N. y Janvier, B. (1996). Emergence and development of algebra as a problem-solving tool: Continuities and discontinuities with arithmetic. En N. Bednarz, C. Kieran et L. Lee (dir.), Approaches to algebra. Perspectives for research and teaching (p. 115-136). Boston, MA: Kluwer Academic Publishers.
Blanton, M. y Kaput, J. (2004). Elementary grades students’ capacity for functional thinking. En M. Jonsen, M.J. Høines et A. Fuglestad (dir.), Proceedings of the 28th annual conference of the International Group for the Psychology of Mathematics Education (Vol. 2, p. 135-142). Bergen, Norway: PME.
Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Lsler, I., y Kim, J. S. (2015). The development of children’s early algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46, 39-87.
Cai, J. et Knuth, E. (dir.). (2011). Early algebraization-curricular, cognitive and instructional perspectives. Advances in mathematics education. Berlin/Heidelberg, Allemagne: Springer.
Carpenter, T. P., Franke, M. L. y Levi, L. (2003). Thinking mathematically: Integrating arithmetic and algebra in the elementary school. Portsmouth, NH : Heinemann.
D’Aoust, L. (2011). Fafounet et la chasse aux cocos de Pâques. Montréal, QC : Les Malins.
Fayol, M. (1990). L’enfant et le nombre. Paris, France : Delachaux & Niestlé.
Fyfe, E. R., Matthews, P. G., Amsel, E., McEldoon, K. L., y McNeil, N. M. (2018). Assessing formal knowledge of math equivalence among algebra and pre-algebra students. Journal of Educational Psychology, 110(1), 87-101.
Gelman, R. y Gallistel, C. R. (1978). The child’s understanding of number. Cambridge: Harvard University Press.
Jones, I., Inglis, M., Gilmore, C. y Evans, R. (2013). Teaching the substitutive conception of the equals sign, Research in Mathematics Education, 15, 1-16.
Karsenti, T. y Savoie-Zajc, L. (2004). La recherche en éducation : étapes et approches (3e éd.). Sherbrooke, QC: Éditions du CRP.
Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317-26.
Kieran, C. (1996). The changing face of school algebra. En C. Alsina, J. Alvarez, B. Hodgson, C. Laborde et A. Pérez (dir.), 8th The International Congress on Mathematical Education: Selected lectures (p. 271-290). Seville, Spain: S.A.E.M. Thales.
Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139-151.
Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. En F. K. Lester, Jr., (dir.), Second handbook of research on mathematics teaching and learning (p. 707-762). Greenwich, CT: Information Age.
Kieran, C. (2014). Algebra teaching and learning. Dans S. Lerman (dir.), Encyclopedia of Mathematics Education (p. 27-32). Dordrecht, Pays-Bas : Springer.
Knuth, E., Stephens, A., Blanton, M. y Gardiner, A. (2016). Build an early foundation for algebra success. Kappan, 97(6), 65-68.
Knuth, E. J., Stephens, A. C., McNeil, N. M. y Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37, 297-312.
Lessard, G., Anwandter Cuellar N. S. y Boily M. (2014). La pensée algébrique au préscolaire-primaire, une requête réaliste? En Actes du Colloque du Groupe de didactique des mathématiques du Québec (GDM). Croisements variés de concepts, d’approches et de théories : Les Enjeux de la création en recherche en didactique des mathématiques. UQAM, Montréal, 7 au 9 mai 2014.
McNeil, N. (2014). A change–resistance account of children’s difficulties understanding mathematical equivalence. Child Development Perspectives, 8(1), 42-47.
McNeil, M. et Alibali, W. M. (2005). Knowledge change as a function of mathematics experience: All contexts are not created equal. Journal of Cognition and Development, 6, 285-306.
Ministère de l’éducation de l’Ontario. (2008). Guide d’enseignement efficace des mathématiques de la maternelle à la 3e année Modélisation et algèbre. Fascicule 2, Situations d’égalité. Toronto, ON : Queen’s Printer for Ontario.
Ministère de l’éducation de l’Ontario. (2014). Enquête collaborative en Ontario. Série d’Apprentissage Professionnel, 39. Recuperado de: http://www.edu.gov.on.ca/fre/literacynumeracy/inspire/research/CBS_CollaborativeInquiryFr.pdf
Mix, K. S. (1999). Similarity and numerical equivalence: Appearances count. Cognitive Development, 14, 269-297.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Radford, L. (2012). Early algebraic thinking, epistemological, semiotic, and developmental issues. En Cho S. (dir.) Proceedings of 12th International Congress on Mathematical Education (p.209-227), Cham, Suisse: Springer.
Radford, L. (2014). The progressive development of early embodied algebraic thinking. Mathematics Education Research Journal, 26, 257-277.
Rittle-Johnson B., Fyfe E. R., McLean L.E. y McEldoon K. L. (2013). Emerging understanding of patterning in 4-year-olds. Journal of Cognition and Development, 14(3), 376-396.
Schliemann, A. D., Carraher, D. W. y Brizuela, B. M. (2012). Algebra in elementary school. En L. Coulange et J.-P. Drouhard (dir.) Enseignement de l’algèbre élémentaire : Bilan et perspectives. Recherches en Didactique des Mathématiques, Hors série, (p.109-124). Grenoble, France : La Pensée Sauvage.
Schmidt, S. y Bednarz, N. (1997). Raisonnements arithmétiques et algébriques dans le contexte de résolution de problèmes. Educational Studies in Mathematics, 32(2), 127-155.
Sherman, J. y Bisanz, J. (2009). Equivalence in symbolic and non-symbolic contexts: Benefits of solving problems with manipulatives. Journal of Educational Psychology, 101, 88-100.
Squalli, H. (2002). Le développement de la pensée algébrique à l’école primaire : un exemple de raisonnements à l’aide de concepts mathématiques. Instantanés mathématiques, 39, 4-13.
Ste. Marie, A., Giroux J. y Tourigny, C. (2014). Situations d’enseignement sur la composition additive de nombres au préscolaire. Bulletin AMQ, 54(3), 27-37.
Taylor-Cox, J. (2003). Algebra in the early years? Yes! Young Children, 58(1), 14-21.
Theis, L. (2005). Les tribulations du signe « = » dans la moulinette de la bonne réponse. Montréal, QC : Éditions Bande didactique.
Van der Maren, J.-M. (1996). Méthodes de recherche pour l’éducation. (2e éd.). Montréal/Bruxelles, QC/Belgique : PUM et de Boeck.
Vergnaud, G. (1981). L’enfant, la mathématique et la réalité : problèmes de l’enseignement des mathématiques à l’école élémentaire. Berne, Allemagne : Peter Lang.
Warren, E., Mollinson A. y Oestrich K. (2009). Equivalence and equations in early years classrooms. Australian Primary Mathematics Classroom, 14(1), 10-15.